Bacteria, Bio hacking, Biological Computation, Biology, Biometrics, Code, DNA, Medicine, Music, Nature, Neural Networks, PDF, Radio, Science, Sound

Bacterial Radio

“There has been considerable interest in bacterial communities wherein a bacterium is connected to neighbor- ing bacteria by means of narrow nanowires. It is believed that the purpose of the nanowires is to allow for intercellular electronic communications. More advanced on the evolutionary scale are the more modern bacterial communities which are wireless. The electromagnetic signals sent from a bacterium to neighboring bacteria can be due to relatively low frequency electron level transitions within DNA.”

20140626-234217.jpg

Advertisements
Standard
Animals, Biology, Biometrics, DNA, Economy, Education, Nature, Neural Networks, Science, Social intelligence, Society

Twittering bacteria: on bacteria… social intelligence

“New research suggests that microbial life can be even richer: highly social, intricately networked, and teeming with interactions [47]. Bassler [3] and other researchers have determined that bacteria communicate using molecules comparable to pheromones. By tapping into this cell-to-cell network, microbes are able to collectively track changes in their environment, conspire with their own species, build mutually beneficial alliances with other types of bacteria, gain advantages over competitors, and communicate with their hosts – the sort of collective strategizing typically ascribed to bees, ants, and people, not to bacteria. Eshel Ben-Jacob [6] indicate that bacteria have developed intricate communication capabilities (e.g. quorum-sensing, chemotactic signalling and plasmid exchange) to cooperatively self-organize into highly structured colonies with elevated environmental adaptability, proposing that they maintain linguistic communication. Meaning-based communication permits colonial identity, intentional behavior (e.g. pheromone-based courtship for mating), purposeful alteration of colony structure (e.g. formation of fruiting bodies), decision-making (e.g. to sporulate) and the recognition and identification of other colonies – features we might begin to associate with a bacterial social intelligence.”

20140618-061956.jpg

Standard