Anthropology, Bacteria, Farming, History, Medicine, Nature, PDF, Society

‘Darwinian Gastronomy: why we use spices’ (1999) Sherman and Billing

“An early attempt to use statistical analysis of cookbooks to reveal deeper patterns about what we eat and why. The paper theorizes that there is an evolutionary benefit to eating spices: “by cleansing food of pathogens before consumption, spice users contribute to the health, longevity and fitness of themselves, their families and their guests.” There is more disease in the tropics and this is also where most spices are added to food, or so the paper seems to argues. Personally I think the argument runs the risk of putting the horse behind the carriage. Spices predominately grow in tropical areas and it makes sense to expect that this is where they eat them most.”


Anthropology, Archeology, Biometrics, Economy, Farming, History, Medicine, Nature, Science, Society

Phytoliths in Pottery Reveal the Use of Spice in European Prehistoric Cuisine

Opium poppy (Papaver somniferum)
Dill (Anethum graveolens)
Caper (Capparis spinosa)
Coriander (Coriandrum sativum)
Cumin (Cuminum cyminum)
A kind of mustard ? (Cruciferae family)
“Figure 1. Early contexts from which spices have been recovered, with photomicrographs of globular sinuate phytoliths recovered from the pottery styles illustrated. Showing, A) A map of Europe showing an inset of the study area and sites from which the pot residues were acquired;, including also the Near East and northern Africa indicating early contexts where spices have been recovered: a) Menneville, France (Papaver somniferum L.), b) Eberdingen, Germany (Papaver somniferum L.), c) Seeberg, Switzerland (Papaver somniferum L.), d) Niederwil, Switzerland (Papaver somniferum L.), e) Swiss Lake Villages, Switzerland (Anethum graveolens L.), f) Cueva de los Murcielags, Spain (Papaver somniferum L.), g) Hacilar, Turkey (Capparis spinosa L.), h) Tell Abu Hureya, Syria (Caparis spinosa L.), i) Tell ed-Der, Syria (Coriandrum sativum L. and Cuminum cyminum L.), j) Khafaji, Iraq (Cruciferae family), k) Tell Aswad, Syria (Capparis spinosa L.), l) Nahal Hemar Cave, Israel (Coriandrum sativum L.), m) Tutankhamun’s tomb, Egypt (Coriandrum sativum L.), n) Tomb of Kha, Egypt (Cuminum cyminum L.), o) Tomb of Amenophis II, Egypt (Anethum graveolens L.), p) Hala Sultan Tekke, Cyprus (Capparis spinosa L.), q) Heilbronn, Germany (Papaver somniferum L.), r) Zeslawice, Poland (Papaver somniferum L.) [compiled using 8–17]. B) Hunter-gatherer pointed-based vessel (on the left) and Early Neolithic flat-based vessel (on the right). C) Scanning Electron Microscope image of a globular sinuate phytolith embedded in a food residue, D) optical light microscope image of modern Alliaria petiolata globular sinuate phytoliths, and E) optical light microscope image of archaeological globular sinuate phytolith examples.


Algorithm, Architecture, Astrology, Automata, Commons, Economy, Farming, Man/Machine, Mathematics, Society, Water

Crypto Water Computers from 1936

“In the front right corner, in a structure that resembles a large cupboard with a transparent front, stands a Rube Goldberg collection of tubes, tanks, valves, pumps and sluices. You could think of it as a hydraulic computer. Water flows through a series of clear pipes, mimicking the way that money flows through the economy. It lets you see (literally) what would happen if you lower tax rates or increase the money supply or whatever; just open a valve here or pull a lever there and the machine sloshes away, showing in real time how the water levels rise and fall in various tanks representing the growth in personal savings, tax revenue, and so on.”


Animals, Biology, Biometrics, Brain, Farming, Nature, Neural Networks, Science

Cognitive Maps in Bees

“Experimentally captured and displaced bees often depart from the release site in the compass direction they were bent on before their capture, even though this no longer heads them toward their goal. When they discover their error, however, the bees set off more or less directly toward their goal. This ability to orient toward a goal from an arbitrary point in the familiar environment is evidence that they have an integrated metric map of the experienced environment.”


Algorithm, Biology, DIY, Farming, Maker, Nature, Neural Networks, phenomenology, Science, Tactical Media

Earth Computer

“The earth computer conceives of a (computational) device of the same substance as the earth, to be embedded in the earth and embedding a quotation (after Edgar Allen Poe’s The Narrative of Arthur Gordon Pym). The central conceit is the use of the earth itself as a dirty, irrational computational device. An attempt will be made to reproduce common components, such as memory, power supply, and CPU with earth-based elements; a form of computational land art. Techniques borrowed from the semiconductor and computer industry will be applied to the raw earth substrate either in situ (documented actions at Whitby) or as a speculative performance.”


Algorithm, Art, Bio hacking, DIY, DNA, Farming, Mathematics, Nature, Neural Networks, Robots, Science

Agricultural Printing/Altered Landscapes

“The project uses the idea of “Agricultural Printing” to explore the possibilities of digital fabrication carried over into farming. The experiment applies algorithms to partition and to create an environmentally beneficial structure into a standard biomass/energy production field. These additional areas establish, or improve, the connectivity for fauna and flora between habitats. This increased diversity also eases typical problems of monocultures e.g. less vermin → reduced usage of pesticides.”