AI, Algorithm, Automata, Biological Computation, Code, Cybernetics, Deep Learning, Emergence, Man/Machine, Neural Networks, Robots, Science, Social intelligence, Society

Can a robot be too nice?

“Designing artificial entities perfectly groomed to meet our emotional needs has an obvious appeal, like creating the exact right person for a job from thin air. But it’s also not hard to imagine the problems that might arise in a world where we’re constantly dealing with robots calibrated to treat us, on an interpersonal level, exactly the way we want. We might start to prefer the company of robots to that of other, less perfectly optimized humans. We might react against them, hungry for some of the normal friction of human relations. As Lanier worried, we might start to see the lines blur, and become convinced that machines—which in some ways are vastly inferior to us, and in other ways vastly superior—are actually our equals.”

20140820-212301.jpg

Standard
AI, Algorithm, Biometrics, Brain, Capitalism, Cybernetics, Economy, Education, Emergence, Ethics, Man/Machine, Robots, Science, Social intelligence, Society

Will You Lose Your Job To a Robot?

“The biggest exception will be jobs that depend upon empathy as a core capacity — schoolteacher, personal service worker, nurse. These jobs are often those traditionally performed by women. One of the bigger social questions of the mid-late 2020s will be the role of men in this world.” — Jamais Cascio, technology writer and futurist

20140808-112942.jpg

Standard
AI, Animals, Brain, Emergence, Ethics, philosophy, Religion, Robots, Science, Society

Buddhist perspectives on AI

“From the viewpoint of Buddhism, all life is emergent, entities functioning at a capacity greater than the sum of their parts. There is no special qualifier that separates any form of intelligence from another (note that even consciousness is on the list of things that we aren’t.”. This means that an intelligence inside of a robot body, a computer, or existing on the Internet would be just as worthy of being considered “alive” as a squirrel, a human, or a bacteria. Further, Buddhism accepts the existence of life that does not have a physical body. In the Buddhist mythology, beings that exist in realms without physical bodies are described and treated the same as those with physical bodies. Although this ethic is ascribed to mythical beings, if we begin to see actual beings that exist in “formless realms”, most Buddhists would likely see no problem accepting them as living. In Buddhism, a computer intelligence would be viewed by most as a new form of life, but one equally possessed of the heaps and equally capable of emergent behavior and enlightenment. The Dalai Lama, Thich Nhat Hanh, and several other high profile Buddhist thinkers have already spoken in support of AI as a living being.”

20140727-225214.jpg

Standard
Algorithm, Architecture, Automata, Bio hacking, Brain, Cybernetics, DIY, Interface, Light, Maker, Man/Machine, Mathematics, Music, Neural Networks, Robots, Science, Society, Sound, Tactical Media

History of Computer Art : Cybernetic Sculptures

“In 1968 artists and musicians like Stephen Antonakos, Terry Riley, Charles Ross and Robert Whitman realised installations producing light and sound events for the exhibition “The Magic Theatre”. James Seawright constructed “Electronic Peristyle” 37: an uncommon work for an uncommon exhibition. He installed “power supplies” in a base under a sphere. The sphere was made of transparent plastic and contained 12 photocells. A “cylindrical metal box” with 12 “light beam projectors” was mounted underneath the “plastic sphere”. The electronics in this vertical structure with round segments “was either digital (the earliest family of Motorola RTL logic chips)” or it contained “conventional analog transistor circuits.” These electronics controlled the generation of sounds by “electronic synthesizer modules”. These modules were developed by Robert Moog. He integrated his analog equipment in Seawright´s installation.”

20140612-011258.jpg

Standard
Algorithm, Ethics, Interface, Man/Machine, Mathematics, Nature, Neural Networks, philosophy, Robots, Science, Society, Tactical Media

Robot Ethnography

“Rather, the point of anthropology is typically to locate a people who are typically strange and foreign to us, and then relate the way in which those people live, showing not only how they are different from us but also how they are the same. In doing so, we learn not only about others, but also ourselves. So in that framework, I tend to agree with the critics who say that only way to give a vitalistic account of a robot society is by projecting too many human qualities onto the non-human. What is then left is a non-vitalistic ethnography: an account of a culture devoid of life. Like with Latour and agency, once we show that life is not a necessary criterion for this thing called culture, then the fun really begins — and you can see why lots of people would oppose this.”

Standard
Art, Automata, Biology, Biometrics, Film, History, Interface, Man/Machine, Music, Nature, Neural Networks, PDF, Robots, Science, Society, Sound, Tactical Media

Sholpo, Russian sound Art Histories and Generation Z

“Graphical (Drawn) Sound is a technology of synthesizing sound from light that was developed in Soviet Russia in 1929 as a consequence of the newly invented sound-on-film technology, which made possible access to the sound as a trace in a form that could be studied and manipulated. It also opened up the way for a systematic analysis of these traces such that they could be used to produce any sound at will. The laboratories that were soon created became the first-ever prototypes of the future centres for computer music. While most inventors of electronic musical instruments were developing tools for performers, the majority of methods and instruments based on Graphical Sound techniques were created for composers. Similar to modern computer music techniques, the composer could produce the final synthesized soundtrack without need for any performers or intermediates. At exactly the same time similar efforts were being undertaken in Germany by Rudolf Pfenninger in Munich and, somewhat later, by Oscar Fischinger in Berlin. Among the researchers working with Graphical Sound after World War II were the famous filmmaker Norman McLaren (Canada) and the composer and inventor Daphne Oram (UK)”

20140606-212733.jpg

Standard
Algorithm, Art, Automata, Biometrics, Brain, History, Interface, Man/Machine, Mathematics, Music, Neural Networks, PDF, Robots, Science, Society, Sound

When Machines Play Chopin

“However, as the eighteenth-century androids show, machines and or­ ganic nature, including human cognition, were not always polar opposites. Philipp Sarasin writes in his book on machines and the body that the machine and the organic were interchangeable in pre-Romantic thought (75). In another study on machines in human history, Herbert Heckman explains that the relationship between the body and the machine starts with the stone-age necessity to build tools as extensions of the body in order to survive (11). The nineteenth-century desire to separate the mechanical from the organic was a reaction to Enlightenment philosophy and an attempt to break away from this thinking in favour of an emphasis of expression and spirit over form.”

20140606-210526.jpg

Standard